Physics with Future CMB Surveys

Blake D. Sherwin

NASA Einstein Fellow, LBNL

ACT/Simons Observatory/CMB-S4/LiteBIRD Collaborations

Outline

- I. Inflation via B-modes
- II. Neutrino properties via CMB lensing
- III. Light particles via small scale CMB
- IV. Experiments: S4 and Beyond

The Physics of Inflation from the CMB

 Inflation: initial phase of accelerated expansion with shrinking horizon – explains flatness + fluctuations

Well tested for density fluctuations

 Many models of inflation produce inflationary gravitational waves.
 Strength: parameterized by tensor/scalar ratio r

The Physics of Inflation from the CMB

 Detection: confirm inflation paradigm; strength tells us the *energy scale*

 Even improved upper limits on r very interesting. Target: ruling out r>0.001 will exclude large field models

 Best way to detect inflationary GWs: CMB. Not T or E-polarization, but characteristic CMB B-polarization

CMB B polarization* with r = 0

CMB B polarization* with r>0

See r clearly as there is no background cosmic variance from normal (scalar) density perturbations

Limits: $\sigma(r) < 0.1$

CMB B polarization* with r>0

See r clearly as there is no background cosmic variance from normal (scalar) density perturbations

What is needed to reach r~0.001? (2 orders of magnitude improvement)

10°

Noise and Systematics

- Signal is extremely small (<100 x T)
- Requirement: Need extremely low polarization noise level (~0.5uK', fsky~0.04)
- Low levels of systematics from beam / leakage, readout...

Foregrounds

- Galactic emission also sources B-mode polarization
- Requirement: multifrequency data (~8+freqs.) to remove.
- How complex are foregrounds? (Decorrelation, AME, variation...?)

CMB Lensing Noise

- Grav. lensing of CMB also makes B; lensing noise limits measurements. How to reduce?
- Delensing: measure lensing (see later), deduce Blens, and subtract
- Requirement: highresolution, low noise (<4', ~1uK'), good delensing algorithms!

N.B. Recently, first demonstration in data! [Larsen/Challinor/Sherwin+2016, Sherwin/Schmittfull 2015]

Outline

- I. Inflation via B-modes
- II. Neutrino properties via CMB lensing
- III. Light particles via small scale CMB
- IV. Experiments: S4 and Beyond

Neutrino Masses

- We know mass differences, but don't know the mass scale, or even which neutrino is heaviest (i.e. the mass ordering)
- measuring the **sum** of masses $\sum m_{\nu}$ will give lots of insight (ultimate goal: mechanism that gives neutrinos mass)

Mass sum:

12

Cosmic Neutrino Background: Changes Matter Structure Growth

 The more massive neutrinos are, the more small scale matter structure is blurred out.

Cosmic mass distribution

Image: Viel++ 2013

Neutrino Mass Negligible

Neutrino Mass Large (qualitative)

Small scale blurring also seen in CMB lensing map

Cosmic Neutrino Background: Changes Matter Structure Growth

 The more massive neutrinos are, the more small scale matter structure is blurred out.

Small scale blurring also seen in CMB lensing map

Challenges and Requirements: Lensing and Neutrino Mass

- Target ~60 meV or $\sigma(\sum m_{\nu}) \sim 15 \,\, \mathrm{meV}$
- Requirements: large area, high resolution, low-noise (fsky~0.2,~<uK',<4') polarized CMB data for lensing (also useful for DE)
- Significant challenges in lensing data analysis and theory! But achievable (problem: tau?)

Signal-to-noise on lensing

Outline

- I. Inflation via B-modes
- II. Neutrino properties via lensing
- III. Light particles via small scale CMB
- IV. Experiments: S4 and Beyond

Light Particles and Cosmology

- Cosmic Neutrino Background: in radiation era, very large part of the energy density - 41% of total!
- Influences expansion rate H (as extra form of radiation):

$$3M_{\rm pl}^2H^2 \simeq \rho_{\gamma} + \rho_{\nu}$$

Light Particles and Cosmology

- Cosmic Neutrino Background: in radiation era, very large part of the energy density - 41% of total!
- Influences expansion rate H (as extra form of radiation):

$$3M_{\rm pl}^2 H^2 \simeq \rho_{\gamma} + \rho_{\nu} \longleftarrow N_{\rm eff} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\nu}}{\rho_{\gamma}}$$

- Energy density parameterized via number of effective neutrino species N_{eff}. Measure via CMB
 - Measure this with Planck: $N_{\rm eff} = 3.04 \pm 0.18$
 - So what? We have Z-decay measurements.

N_{eff} from Cosmology: A Universal Probe for Light Relics

- Not just sensitive to particles with the SM couplings of neutrinos
- Gravity sees everything: cosmology probes all that is neutrino like (radiation, free-streaming)

$$3M_{\rm pl}^2 H^2 \simeq \rho_{\gamma} + \rho_{\nu}$$

 Can hunt for any new light (relativistic, weakly coupled) particles!

History of an Extra Light Particle

- At high energies, weakly interacting particle is produced in thermal equilibrium. It freezes out at T_{freeze-out}. At first, ΔN_{eff}~1.
- Universe cools. Phase transition! (e.g. muons/antimuons annihilate).

History of an Extra Light Particle

- At high energies, weakly interacting particle is produced in thermal equilibrium. It freezes out at T_{freeze-out}. At first, ΔN_{eff}~1.
- Universe cools. Phase transition! (e.g. muons/antimuons annihilate).
- Annihilating particles dump energy into photons not particle. ΔN_{eff} goes DOWN for every phase transition after freeze out.

$$N_{\text{eff}} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_{\nu}}{\rho_{\gamma}}$$

Impact on energy gets diluted

A Particle Freezes Out. How Much N_{eff} Does it Contribute?

A Particle Freezes Out. How Much N_{eff} Does it Contribute?

Here, some muons (e,g.)
will annihilate after freeze
out: ΔN_{eff} ~0.5

[Baumann++ 2015]

A Particle Freezes Out. How Much N_{eff} Does it Contribute?

 At high freeze-out temperature, the particle misses out on lots of energy from the QCD phase transition, so ΔN_{eff} is very small.

N_{eff}: What is the Target?

If we can measure this:

 target sensitivity, can see
 any new light particle that
 was ever in equilibrium (out
 to reheating temp.!)

Real Scalar: $\Delta N_{
m eff} = 0.027$

Weyl Fermion: $\Delta N_{
m eff} = 0.047$

Vector boson: $\Delta N_{
m eff} = 0.054$

Probing N_{eff} in the CMB Power Spectra

 Change in early expansion rate > change in diffusion time > small change in damping seen in CMB power spectrum.

Also: small shift in phases (free-streaming). Delensing helps!

Challenges / Requirements: High Precision Small-scale CMB Spectra

 Requirement to hit targets: Very low noise (~uK') and large sky areas (fsky~1)

- Good beam systematics control
- Or lower noise: 2 sigma, room for improvement

Outline

- I. Inflation via B-modes
- II. Neutrino properties via lensing
- III. Light particles via small scale CMB
- IV. Experiments: S4 and Beyond

CMB Stage IV Requirements and Challenges

- CMB-S4 is the next generation CMB survey.
 Requirements:
 - low noise (~1uK')>500000 bolometers
 - 5+ frequencies
 >multichroic pixels
 - high resolution (<4')
 >3+ meter telescope
- Main challenges: scale / systematics tolerance / ultra high precision data analysis

Beyond CMB-S4

- r / M_v: need more frequency channels
 - Space mission (Litebird / PIXIE/Core...)
- N_{eff}: need lower noise over more area
 - "CMB-S5" to reach 5 sigma on minimal targets
- Spectral distortions for P(k), lines...
 - Ultra sensitive spectrometer in space (PIXIE / PRISM-like...)

Overheard: cosmology talk, ca. 2013-2014

"Planck will soon have observed all the modes in the CMB"

 "To learn about physics, the CMB game is over, LSS is the only way forward."

Future CMB will Probe Physics from here to the Highest Energies and Earliest Times

With CMB-S4 and beyond, probe:

Inflation via r (target ~0.001)

[+spectral distortions, non-Gaussianity]

Neutrino Mass (target ~o.o6eV) [and Dark Energy, cross-correlations] via Lensing

Light relics via Neff (target ~0.03)

I think many of the most interesting areas of CMB physics are just beginning!

Backup Slides

Demonstrating Delensing: Difference of Lensed and Delensed Temp. Spectra

Lensing Measurement

$$T(\mathbf{l}) = \text{FourierTransform}[T(\mathbf{\hat{n}})]$$

Without lensing, CMB temperature modes are independent

$$\langle T(\mathbf{l})T^*(\mathbf{l} - \mathbf{L}) \rangle = 0$$

Lensing changes known statistics: introduces correlations

$$\langle T(\mathbf{l})T^*(\mathbf{l} - \mathbf{L}) \rangle \sim d(\mathbf{L})$$

• So: measure lensing by looking for these correlations in temp. $\hat{d}(\mathbf{L}) \sim \int d^2\mathbf{l} \; T(\mathbf{l}) T^*(\mathbf{l}-\mathbf{L})$

Lensing Measurement

$$T(\mathbf{l}) = \text{FourierTransform}[T(\mathbf{\hat{n}})]$$

Without lensing, CMB temperature modes are independent

$$\langle T(\mathbf{l})T^*(\mathbf{l} - \mathbf{L}) \rangle = 0$$

Lensing changes known statistics: introduces correlations

$$\langle T(\mathbf{l})T^*(\mathbf{l} - \mathbf{L}) \rangle \sim d(\mathbf{L})$$

So: measure lensing by looking for these correlations in

$$\hat{d}(\mathbf{L}) \sim \int d^2 \mathbf{l} \ T(\mathbf{l}) T^* (\mathbf{l} - \mathbf{L})$$
 and polarization $\hat{d}(\mathbf{L}) \sim \int d \mathbf{l} \ E(\mathbf{l}) B^* (\mathbf{l} - \mathbf{L})$

and polarization

Measuring CMB Lensing Convergence: An Approximate Picture

[Hu, Okamoto 2002]

look for lensing-induced correlations of E and B (delens, iterate, for higher signal-to-noise)

CMB Lensing Convergence Measurement

True
Lensing:
(Simulation
input, 1uK'
CMB noise)

10 degrees

CMB Lensing Convergence Measurement

[pipeline: Sherwin++ in prep. 2016]